By now we are familiar with all the different ways of testing a series for convergence or divergence, but we've studied each method in its own little basket of examples. The question becomes,
Given a series, which test should we use?
The following flow list can help us work through the process of deciding what test to use.
Determine where the series is convergent or divergent.
$$
\sum_{n=1}^{\infty} \left( \dfrac{1}{n^3} + \dfrac{1}{3^n}\right)
$$
Determine whether the series converges or diverges.
$$
\sum_{n=1}^{\infty} \dfrac{n-1}{n^3+1}
$$
Determine whether the series converges or diverges.
$$
\sum_{n=1}^{\infty} \dfrac{\sqrt{n^4 + 1}}{n^3+n}
$$
Determine whether the series converges or diverges.
$$
\sum_{k=1}^{\infty} \dfrac{5^{k}}{3^{k}+4^{k}}
$$
Determine whether the series converges or diverges.
$$
\sum_{n=2}^{\infty} \dfrac{1}{\big(\ln(n)\big)^{\ln(n)}}
$$
Determine whether the series converges or diverges.
$$
\sum_{n=1}^{\infty} (-1)^n\dfrac{n^2-1}{n^2+1}
$$
Determine whether the series converges or diverges.
$$
\sum_{n=2}^{\infty} \dfrac{(-1)^{n-1}}{\sqrt{n} -1}
$$
Determine whether the series converges or diverges.
$$
\sum_{n=1}^{\infty} n^{2}e^{-n^{3}}
$$
Determine whether the series converges or diverges.
$$
\sum_{n=1}^{\infty} \left(\dfrac{n}{n+1}\right)^{n^{2}}
$$
Determine whether the series converges or diverges.
$$
\sum_{n=1}^{\infty} \dfrac{n!}{e^{n^{2}}}
$$
Questions? You can ask them here.
© 2020 Justin L. Mears, Justin M. Ryan, Arelis Silva-Trujillo
© 2009-20 Justin M. Ryan
Your use of any material found at this site is subject to this
Creative Commons License.